

	Plil DIVIIDE	
		I CAN MULTIPLY
I Rnour if A NUMBER IS PRIME or composite 5 is Primes 12 is composite		
		I CAN SOLVE DIVISION PROBEMS WITH REMAINDERS $43 \div 76 \times 7+1$

 WITHIN

$2 \times 45 \times 108 \times 9$

I CAN MULTIPLY I-DIGIT BY

3-DIGIT NUMBERS

(I can illustrate and explain the calculation by using equations, rectangular arrays and/or area models.)

I CAN MULTIPLY 2-DIETP BY 2-DIEIT NUMBERS

I can illustrate and explain the calculation by using equations, rectangular arrays and/or area models

I CAN MULTIPLY l-DIGIT BY 2-DIGIT LUMBERS

(I can illustrate and explain the calculation by using equations, rectangular arrays and/or area models.)

I CAN MULTIPLY

IUMBSRS
I can illustrate and explain the calculation by using equations, rectangular arrays and/or area models.

$$
5 \times 2678
$$

I can find all

 FACTOR PAIRSOF A WHOLE NUMBER

multiples

I know if A NUMBER IS PRIMIE or composite 5 is Prime
 12 is composite

Ican divide

 within
Ican divide

2-digit by 2-digit numbers
I can illustrate and explain the calculation by using equations, rectangular arrays and/or area $78 \div 5$ models.

I CAN DIVIDE
 3-DIGIT BY I-DIGIT NUMBERS.

I can illustrate and explain the calculation by using equations, rectangular arrays and/or area models.

$$
135 \div 8
$$

$10+5+1$

80	40	8

$$
135=16 \times 8+7
$$

I CAN DIVIDE 4-DIGIT BY I-DIGIT NUMBERS.

I can illustrate and explain the calculation by using equations, rectangular arrays and/or area models 1570/2 750 + 35

$$
150070
$$

I CAN SOLVE

 2 STEP WORD PROBLEMS LUKE HAD 17 MARBLES HIS BROTHER HAD 2 TIMES AS MANY.HOW MANY DID THEY HAVE ALTOGETHER?

】 CAN SOLVE BASIC MULTIPLICATION WORD PROBLEMS

THERE WERE 12 IROM/S
 OF APPLE TREES

 THERE WEREIN EACH ROW. HOW MANY APPLE TREES MERE THERE?

ICAN SOLVE BASIC DIVISION WORD PROBLEMS

JAMAL HAD 10 RINGS. He shared them with his brother. They now have the same amount.
WMRIPIE AN RQUATHION
FOR THIS PROBLEM

I CAN SOLVE THE 3 TYPES OF MULTIPLICATIVE COMPARISON WORD PROBLEMS

SUE HAS 9

BRACELETS

SHE HAS 3 TIMES AS MANY AS HER SISTER HOW MANY DOES HER SISTER HAVE?

$$
9 \div 3=3
$$

I CAN INTERPRET THE

 REMAINDER.
HONG HAD 14 TOYS

HE SHARED THEM BETWEEN

HIS 2 FRIENDS AND HLMSELF.
How many did each person get?

I CAN GENERATE A NUMBER PATTERN THAT FOLLOWS A Given rule.

Make a pattern that shows a number being MUlTIPLIED BY 5.

510152025

 30354045 50.....

I understand that numbers to the left increase and numbers to the right decrease.

10x the amount
1/10 the amount

55,555

$50,000+5,000+500+50+5$

-○○○○○○○○

「I Can taik about I NUMBERS IN EXPANDED I FORM, STANDARD FORM AND WORD FORM.

ட - - - - - - - 」
$2570=2000+500+70+0$

I CAN COMPARE

 NUMBERS USING >, =, AND < SYMBOLSTWO THOUSAND FIVE HUNDRED SEVENTY

I can round NUMBERS TO ANY PLACE.	
II RAN ISUBPRIRARTP IMVULTPI-DIGITP INUMMBERSS. ᄂ----- - 」 2000-99	

I CAN DECOMPOSE A FRACTION IN MORE THAN ONE WAY

I CAN JUSTIFY DECOMPOSITIONS BY USING A VISUAL FRACTION MODEL.

$$
\frac{5}{10}=\frac{2}{10}+\frac{3}{10}
$$

1	1	1	1	1		1		1		1	1	1	1
10	10	10	10	10		10	10			10	10		10

I CAN COMPARE FRACTIONS WITH DIFFERENT NUMERATORS AND DIFFERENT DENOMINATORS.

I CAN RECORD THE RESULT OF COMPARISONS WITH SYMBOLS $>,=$, OR <, AND JUSTIFY THE CONCLUSIONS e.g., by using a visual fraction model.

1 CAN ADD FRACTIONS WITH LIKE DENOMLNATORS

1 CAN SUBTRACT FRACTIONS WITH LIKE DENOMLNATORS

I CAN RECOGNIZE AND GENERATE EOUIVALENT

 FRACTIONS.$$
\frac{2}{4}=\frac{4}{8}
$$

I CAN ADD MIXED NUMBERS WITH LIKE DENOMINATORS

I CAN SUBTRACT NUMBERS WITH LIKE DENOMINATORS

I can solve addition fraction word problems by using visual fraction models and equations to represent the problem.

RAUL RAN 2/10 OF A MILE IN THE MORNING AND 5/10 OF A MILE IN THE AFTERNOON.

HOW FAR DID HE RUN?

I CAN SOLVE SUBTRACTION WORD
 PROBLEMS BY USING VISUAL
 FRACTION MODELS AND
 EOUATIONS TO REPRESENT THE PROBLEM
 GRANDMA MADE A CAKE. THE KIDS AIE 1/4 OF IT. HOW MUCH IS LEFT?

4

I CAN MULTIPIY A FRACTION BY A WHOLE NUMPER.

I CAN SOLVE WORD PROBLEMS INVOLVING MULTIPLICATION OF A FRACTION BY A WHOLE NUMBER BY USING VISUAL FRACTION MODELS AND EQUATIONS TO REPRESENT THE PROBLEM

MARY RAN $1 / 4$ OF A MILE FOR 3 DAYS. HOW FAR DID SNE RUN?

$$
\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}
$$

I can express a fraction with a denominator 10 as an equivalent fraction with a denominator of 100 . I can add two fractions with denominators of 100

$\frac{2}{10}$
 $=$

I can use decimal notation for fractions with denominators 10 or 100 .

$10=$

I can record the results of comparisons with the symbols.

I can talk about whole numbers through
$1,000,000,000$ and decimals to the hundredths using expanded notation and numerals.

$$
2570=2000+500+70+0
$$

TWO THOUSAND FIVE HUNDRED

SEVENTY

I can model decimals using different visual models and money.

I can find, place and identify decimals on a number line.

$0 \quad 0.10 .20 .30 .40 .50 .60 .70 .80 .91 .0$

I can compare whole numbers to I billion using symbols．

$2,345,600>2,159,900$

I can order numbers to 1 billion．

2，345，678 comes before 2，789，345

$$
\square \square
$$

I can round numbers to the hundred thousands place $245,909=200,000$
レーーーー ー ー ー ー •

II can decompose a I fraction into unit Ifractions． I
 レーーーーーーー－」

I can compare 2 fractions with different numerators and different denominators with symbols.

I can add
fractions with equal denominators using different models and properties.

I can reason about sums of fractions using benchmark fractions.

This is more than I

I can reason about differences of fractions using benchmark fractions.

This is less than I

I can represent decimals on a number line.

I can model fractions on a number line.

I can add whole numbers.

$=4,455$

I can subtract whole numbers．

I can add decimals．

6000－2999＝ 3001

II can multiply a I number by 10 I using different I properties and I place value． I

－••••••••••
－I can multiply a
－number by 100
－using different
－properties and －place value．
－
－ $25 \times 100=2500$

－\circ ○ \circ ○ \circ ○ －I can multiply 2
－two－digit numbers
－using arrays，area
－models or equations．

I can divide up to a 4 digit

 number by a 1 digit number using arrays, area models or equations.$4004 \div 4=2002 \div 2=1001$

I can round numbers.

$5098=5000$

I can solve 2-step

 division problems with remainders.There were 36 marbles. The store put them in 4 bags. They sold 2 of the bags. How many marbles are left?

$$
36 \div 4=9 \quad 2 \times 9=18
$$

$$
36-18=18
$$

ப——————————


```
    I can solve multi-step
    problems with strip
            diagrams and
                equations.
    My brother has 5 marbles. I have 3 times
        as many. How many do we have
        altogether?
            5
            5 5
\bullet○○○○○○○○
```


$$
2 \times 45 \times 108 \times 9
$$

$$
\begin{aligned}
& \text { C CACJ RNCLELPES }
\end{aligned}
$$

numbers
I CAN ILLUSTRATE AND ERPLAIN TNE
CALCULATION BY USING EOUATIONS.
REGTANGULAR ARRAYS AND/OR AREA MODELS.

I CAN MULTIPLY 1-DICIT BY 3-DICIT NUMBERS

 USING EQUATIONS, REGTANGULAR ARRAYS AND/OR AREA MODELS.

I CAN MULTIPLY 1-DICIT BY 4-DICIT NUMBERS

(RECTANGULAR ARRAYS AND/OR AREA MODELS.) I CAN ILLUSTRATE AND EKPLAIN THE CALCULATION BY USING EQUATIONS, REGTANCULAR ARRAYS ANO/OR AREA MODELS.

5 \% 2678

$$
\begin{aligned}
& \text { o cincmurviple }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LuTMisnis }
\end{aligned}
$$

 mornse

I CAN FIND all factor PAIRS OF A WHOLE NUMBER IN THE RANGE OF 1-100

[BNOW

$$
\begin{aligned}
& \text { I RNNOW IF } \\
& \text { A NUMBER IS PRIME } \\
& \text { OR COMPOSITE } \\
& 5 \text { IS PRIME } \\
& \text { I2 IS COMPOSITE }
\end{aligned}
$$

I CAN DIVIDE WITHIN 100

	0	1	2	3	4	5	6	7	8	9	10
$=0$	0	0	0	0	0	0	0	0	0	0	0
$=1$	0	1	2	3	4	5	6	7	8	9	10
$=2$	0	2	4	6	8	10	12	14	16	18	20
$=3$	0	3	6	9	12	15	18	21	24	27	30
$=4$	0	4	8	12	16	20	24	29	32	36	40
$=5$	0	5	10	15	20	25	30	38	40	45	50
$=6$	0	6	12	18	24	30	36	36	48	54	60
$=7$	0	7	14	21	28	35	42	42	56	63	70
$=8$	0	8	16	24	32	40	48	49	64	72	80
$=9$	0	9	18	27	36	45	54	63	72	81	90
$=10$	0	10	20	30	40	50	60	70	80	90	100

TMCMEERS

I CAN ILLUSTRATE AND EXPLAIN THE CALCULATION BY USING EOUATIONS, RECTANGULAR ARRAYS AND/OR AREA MODELS.

$$
78 \div 5
$$

$10 \div 5$ 5025

$$
\begin{aligned}
& \text { Remancere of } 3 \\
& 78=15 \times 5+3
\end{aligned}
$$

I CAN DIVADE 4-DICIT BY 1-DICIT NUMBERS I CAN ILLUSTRATE AND EXPLAIN THE CALCULATION BY USING EQUATIONS, RECTANCULAR ARRAYS ANO/OR AREA MOOEL.
 $1570 \div 2$ 750 + 35 150070
 785

I CAN SOLVE DIVISION PROBLEMS WTTH REMAINDERS

$6 \times 7+1$

I GAN

$$
\begin{aligned}
& \text { CCAN SOLNE } \\
& \text { 2-STEP WORD PROBLEMS } \\
& \text { LURE MAD } 1 \text { MARBLES. } \\
& \text { MIS BROTHER MAD } 2 \text { TIMES AS } \\
& \text { MANY. } \\
& \text { HOW MANY DID TMEY } \\
& \text { MANE ALTOCETMER? }
\end{aligned}
$$

I CAN SOLVE MULTI-STEP WORD PROBLEMS

Maria had 3 rings. Her sister HAD 4 TIMES as many as she did. Her sister then gave her 2.

HOW MANY DOES MARIA HAVE NOW? HOW MANY DOES HER SISTER HAVE NOW?
HOW MANY 0 O THEY HAVE ALTOGETHER?

I CAN SOLVE BASIC MULTIPLCATION WORD PROBLEMS

 THERE WERE 12 ROWS OF APPLE TREES. THERE WERE 10 IN EACH ROW.
HOW MANY APPLE TREES WERE THERE?

I CAN SOLVE

BASIC DIVISION WORD PROBLEMS

JAMAL HAD 10 RINGS. HE SHARED THEM WITH HIS BROTHER. THEY NOW HAVE THE SAME AMOUNT. r WRITE THE EOUATION NN THEBOK. , I
I

I CAN INTERPRET THE REMAINDERHONG MAD 14 TOYS. HE SHAREDTHEM BETWEEN HIS 2 FRIENDS ANDHIMSELF.
HOW MANY DID EACH PERSON GET?

$\bullet \bullet \bullet$

 CIYEN RULE.

unotastano place value

UNDERSTANOS TMAT NUMBERS TO THE LEFT INCREASE AND NUMBERS TO THE RICHT DECREASE.

55.555
$\mathbf{5 0 , 0 0 0}+\mathbf{5 , 0 0 0}+\mathbf{5 0 0}+\mathbf{5 0} \mathbf{+ 5}$

M BMPANOHO HOCMO STAMOABO FOBM ANO WORO Fobm
 $2570=2000+500+70+0$
 TWO THOUSAND FIVE HUNDRED SEVENTY

$$
\begin{aligned}
& \text { I CAN USE } \\
& \text { PLACE VALUE WHEN } \\
& \text { COMPARING } \\
& \text { WHOLE MUMBERS } \\
& 2345>457
\end{aligned}
$$

$$
\begin{aligned}
& \text { I CAN } \\
& \text { ADP MULTI-DIGIT } \\
& \text { NUMBERS }
\end{aligned}
$$

 MULTI-DIGIT NUMBERS

D

I CAN DECOMPOSE FRACTIONS IN MORE THAN ONE WAY I CAN JUSTIFY DECOMPOSITIONS BY USING A VISUAL FRACTION MODEL.

 $\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10}=\frac{1}{10} \frac{1}{10}+\frac{1}{10} \frac{1}{10} \frac{1}{10}$

I CAN RECOCNJIE AND GENERATE EQUIVALENT FRACTIONS

I CAN COMPARE FRACTIONS WITH DIFFERENT NUMERATORS ANO DIFFERENT DENOMINATORS I CAN RECORD THE RESULT OF COMPARISONS WITH SYMBOLS

D. B_{2} OB

ANO UUSTIFY THE CONCLUSIONS, E.G. BY USING A VISUAL FRACTION MOOEL.

$$
\frac{1}{3}>\frac{1}{6} \quad \frac{\frac{1}{3}}{\frac{1}{6}}
$$

I CAN ADO MIKED NUMBERS WITH LIKE DENOMINATORS
 $$
1 \frac{1}{3}+\frac{2}{3}
$$

I CAN SUBTRACT MIKED NUMBERS WTTH LIKE DENOMINATORS

$$
2 \frac{4}{5}-\frac{1}{5}
$$

I CAN ADO FRACTIONS WITH LIRE DENOMINATORS $\frac{1}{10}+\frac{3}{10}$ I CAN SUBTRACT FRACTIONS WITH LIEE DENOMINATORS

$$
\frac{5}{10}-\frac{4}{10}
$$

I CAN SOLVE ADOITION FRACTION WORO PROBLEMS BY USING VISUAL FRACTION MODELS ANO EQUATIONS TO REPRESENT THE PROBLEM
 RAUL RAN 2/10 OF A MILE IN TNE MORNTNG AND 5/10 OF A MILE IN THE AFTERNOON.
 HOW FAR DID HE RUN?

 $\frac{1}{10} \quad \frac{2}{10} \quad \frac{3}{10} \quad \frac{4}{10} \quad \frac{5}{10} \quad \frac{6}{10} \quad \frac{7}{10} \frac{8}{10} \frac{9}{10} \quad 1$

I CAN SOLVE SUBTRACTION FRACTION WORD PROBLEMS BY USING VISUAL FRACTION MODELS AND EOUATIONS TO REPRESENT THE PROBLEM

GRANDMA MADE A CAKE. THE RIOS ATE 1/4 OF IT.

HOW MUCN IS LEFT?

$$
\begin{aligned}
& \text { ICAN MULTIPLYA } \\
& \text { FRACTION BY A WHOLE } \\
& \text { NUMBER } \\
& 2 \times \frac{1}{4} \\
& \hline
\end{aligned}
$$

I CAN SOLVE WORD PROBLEMS INVOLVNNG

MULTIPLICATION OF A FRACTION BY A WHOLE NUMBER

 BY USING YISUAL FRAGTION MOOELS ANO EOUATIONS REPRESENTINGTHE PROBLEM

MARY RAN 1/4 OF A MILE FOR 3 DAYS. HOW FAR DID SHE RUN?

$$
\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}
$$

$$
\begin{gathered}
\text { UNDERSTANO } \\
\text { DECNMALS }
\end{gathered}
$$

I CAN EMPRESS A FRACTION WTTH A DENOMINATOR 10 AS AN EQUIVALENT FRACTION WTTH A

 DENOMINATOR OF 100. I CAN ADD TWO FRACTIONS WITH DENOMINATORS OF 100

I CAN USE DECIMAL NOTATION FOR FRACTIONS WITH DENOMINATORS 10 AND 100 . 10 \square

I CAN COMPARE 2 DECIMALS TO NUNDREDTHS BY REASONING ABOUT THENR SIEE.

 MULTIPLY

ICANMUITPRY

wirnin

X	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

aciovmuridits

$$
\begin{aligned}
& \text { ICANMULTPLY }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HUMBERS } \\
& \text { ICANIIUSTRATLE AND EXPLAMN THE CALCULATION BY } \\
& \text { USIIMC EOUATIONS, RECTAMCULAR ARRAYS AMO/OR } \\
& \text { AREAMOBLLS. }
\end{aligned}
$$

I CANMOLTPM T-DICIT BY 4-0|CIT

(RECTAMCULLAR ARRAYS ANO/OR AREA MOOLLS.)

 ICANILUSTRRATE AND EXPLAM TRE CALCULATION BY USING EOUAFIONS, RECTANCULAR ARRAYS ANP/OR AREA MODELS.

$$
\begin{aligned}
& \text { TGANHEMETGOH} \\
& \text { EEOMOTOMEEOHOT} \\
& \text { GOviteirs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { moorseo }
\end{aligned}
$$

|CANF|ND aumatron

$$
\begin{aligned}
& \text { INJON } \\
& \text { MVTIP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IKNONIF } \\
& \text { A NUMBER R PRINE } \\
& \text { OR COMPOSTTE } \\
& \text { SIS PRIME } \\
& \text { TY COMPOSTTE }
\end{aligned}
$$

ICANDIVIDE

Wrimin 60

	0	1	2	3	4	5	6	7	8	9	10
$=0$	0	0	0	0	0	0	0	0	0	0	0
$=1$	0	1	2	3	4	5	6	7	8	9	10
$=2$	0	2	4	6	8	10	12	14	16	18	20
$=3$	0	3	6	9	12	15	18	21	24	27	30
$=4$	0	4	8	12	16	20	24	29	32	36	40
$=5$	0	5	10	15	20	25	30	38	40	45	50
$=6$	0	6	12	18	24	30	36	36	48	54	60
$=7$	0	7	14	21	28	35	42	42	56	63	70
$=8$	0	8	16	24	32	40	48	49	64	72	80
$=9$	0	9	18	27	36	45	54	63	72	81	90
$=10$	0	10	20	30	40	50	60	70	80	90	100

WMERTS

$78 \div 5$

$10 \div 5$

5025

 $78=5 \times 5+3$

ICANDIVIE
 4-OICITFYY FOICIIT NUMBERS ICANILUSTRATLE AND EXPLANW TME CALCULATION BY USING LOUATIONS, RECTAMCULAR ARRAYS AND/ORAREA MODELS

$750+35$

785

I CAN SOM DMSION

$6 \times 7+1$

ICANSOLVE

2STEP WORO PROBLENS

 LOKS MAD TT MARBLES MISBROTHER HAO? TIMES AS MANY.

HOU MANY ODP THEY

ICAN SOLVR NULTI-STEP WORD PROBLEMS

Mari h hod 3 rings. Her sister HAD 4 TIMES as many as she did. Her sister then gave her

$$
\begin{aligned}
& 2 . \\
& \text { HOW MAIY DOES MARIA HAVE NOW? } \\
& \text { HOU MANY DOES HER SISTER HAVE } \\
& \text { NOW? } \\
& \text { HOW MANY OO THEY HAVEAYFOCETHLE? }
\end{aligned}
$$

ICANSOLVE

BASICMULTPLICATION

WORD PROBLEMS

THERE WERE T2 ROWS OF APPL PRERS.

 THERE WERE TO INEACH ROH.
HOW MANY APPLL TREES WERE THEREP?

ICANSOLVE

$$
\begin{aligned}
& \text { BASLC OVISION WORA PROBLLIMS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HAVE THE SAME AMOUNT. } \\
& \text { WRITT THELOUATION FOR THIS PROBLIM }
\end{aligned}
$$

ICAM SOLUE THE 3 TYPES OF FIULITPLCARPUE

COIPPARISOM LORD PROBLELIS

SUZ IAS 9 BMACHETS.

SHR HAS S TIMES AS MANY AS

ICAN NTHERPRET THE REMANMDER

AND HIMWSELF.

HOW MANY OID EACH PERSON CIT?

Co
CNVENULE

-••••••••••••••••••••••••••••••••••

I understand that numbers to the left increase and numbers to the right decrease.

 \longleftarrow 10x the amount $\longrightarrow 1 / 10$ the amount W10101
55,555

$50,000+5,000+500+50+5$

$2570=2000+500+70+0$

TWO THOUSAND FIVE HUNDRED SEVENTY

$$
\begin{aligned}
& \text { ICAN USE } \\
& \text { PLAEV VALUELIEN } \\
& \text { COMPRRIIMG } \\
& \text { WHIOLE NUBBERS } \\
& 2345>451
\end{aligned}
$$

ICAN

ADOMULTHOOCITT

ICANSUBTAAST

MUKTEOMT

NUMBTRS

ICAN DECOMPOSE A PRACTION IN MORE THANONE WAY

$\frac{11111}{1010101010}=\frac{11}{1010}+\frac{111}{101010}$

ICANRLCOCNILEAND

CENERATE BOUNALENT

FBACTIOLS

ICAN RECORD THRRESULTOF COMPARISOMS WITM SYMBOLS 8, 0 O 080 AIO JUSTIFY ThE COMCLUSIONS. LC. BY USIICA AISUAL PRACTION MODEL.

ICAN ADO MIKED NUMBERS WITTH LIKE BEMOMINATORS

I CAN SUBTRAGT MIMED NUMBERS WITHLIKE DENOMNINATORS

ICAN ADO FRACTIONS WTTHLIKS

 WTHKLIKSOENOMINATORS

ICAR SOLVE ADOITION RRAGTION WORO PRobliem su villc visuabraction TMEROOBLIM.

RAUL RAN2/10 OF A MILE IN THE MORNIIG AND S/10 OF A

MLE INTHE APTERMOON.

HOW FAR DID HE RUN?

ICAN SOLVE SUBTRAGTION

T0 ค

却 00010010 (0 0且 ค

ICANMUITIPLYA

FRACTIONBY AWHOLE

NUMBER

ICANSOLVE HOROP PROBLSMS IWVOLVIICMULITPLCAFITON OF FRACTIONS BY A HHOLENUMBERBY USINC ISUUAL BRAGTIONMOOLLSANO COUATIONS REPPRESENTMC THE RROBLEM MARY YANI/4OFAMILE FOR SOAYS. HOW FAR ODO SMI RUVY
 $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$

|CAN

DECIMALS

ICANLEPRRSS A FRAGTONWITY ADENOMINATOR TO AS AN COUIVALENT FRACTION WTTHA OENOMINATOR OF 100. ICAN ADD TWO FRACTIONS WITH DENOMINATORS OF 100

$$
\begin{aligned}
& \text { ICAN USE } \\
& \text { OLELMAL NOTAFION } \\
& \text { (POR PRACTONS WITTH } \\
& \text { DENOMMATORS } 10 \text { ANP } 100 \\
& . I D=\frac{1}{10}
\end{aligned}
$$

ICAN COMPARE 2 DECIMALS TO IUNDREDTMS BY REASONING ABOUT PHELRSIRE.

I can talk about
whole numbers
through
1,000,000,000 and
decimals to the
hundredths using
expanded notation
and numerals.
TWO THOUSAND
FIVE HUNDRED
SEVENTY

I can model decimals using different visual models and money.

I can relate decimals to fractions that name tenths and hundredths.

I can compare whole numbers

I can order

numbers

to I billion.

2,345,678 comes

I can round numbers to the hundred thousands.

I can decompose a fraction into unit fractions.

I can decompose a fraction in more than

 I way.
$\frac{4}{5}=\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$ $\frac{4}{5}=\frac{3}{5}+\frac{1}{5}$

I can generate equivalent fractions using different methods.

I can compare 2 fractions with different numerators and different denominators with symbols.

$$
\begin{gathered}
\text { I can add } \\
\text { fractions with } \\
\text { equal } \\
\text { denominators } \\
\text { using } \\
\text { different models } \\
\text { and properties. }
\end{gathered}
$$

I can subtract fractions with equal denominators using different models and properties.

I can reason about sums of fractions using benchmark fractions.

 This is more than 1

I can reason about differences of fractions using

 benchmark

 benchmark
 fractions.

I can model fractions on a number line.

I can represent decimals on a number line.

I can subtract whole numbers.

6000-2999 = 3001

I can multiply a number by 10 using different properties and place value.

25

 0

I can multiply a number by 100 using different properties and place value.

 $25 \times 100=2500$
I can multiply 2

two-digit numbers

 using arrays, area models or equations.
$12 \times 12=144$

I can divide up to a 4-digit number by a I digit number using anrays, area models or

equations.

$4004 \div 4=2002 \div 2=1001$

I can round numbers.

~

I can solve 2-step multiplication problems.

Susie had 5 bags with 10 marbles. She

 gave away 2 bags. How many marbles does she have left?
I can solve 2-step

 division problems with remainders.
There were 36 marbles. The store put them in 4 bags. They sold 2 of the bags. How many marbles are left?

$$
36 \div 4=9 \quad 2 \times 9=18
$$

$$
36-18=18
$$

I can solve multi-step problems with strip diagrams and equations.
 My brother has 5 marbles. I have 3 times as many. How many do we have altogether?

Thank You!

Thank you for your recent download! I hope you enjoy using it in your classroom with your students. Please use this document and share it with others. Please do not store it on a website. Whoever wants to use it should download it from my site. I would love to hear from you. Let me know how Math conferring is going in your classroom. Feel free to email me at newtoneducationsolutions@gmail.com to ask questions, leave feedback and comments. I look forward to hearing from you!

About the Dr. Nicki Newton

Dr. Nicki Newton is an education consultant who works with
 schools and districts around the country and Canada on k-8 math curriculum. She has taught elementary school, middle school, and graduate school. Dr Nicki has an Ed.M. and an Ed.D from Teachers, College Columbia University. She is greatly interested in teaching and learning practices around the world and has researched education in Denmark, Guatemala and India. She has written several books, including being a part of the curriculum team for the new McGraw Hill Reveal Math series. She is currently working on a book about counting.

Terms of Use

Dr. Nicki Newton gives you the right to reproduce and use these pages for use in your classroom, at your grade level, at your school and in your district. You do not have permission to store it digitally or use it for commercial purposes. Uploading this product fully or partially, to the internet is a violation of the Digital Millennium

Copyright Act.

You May:

Use this item for your own classroom
Use this item with grade levels
Use this item for schools and districts
Let's Connect!

You May Not:

Post this in any form on the Internet
Change any part of this document
Sell this document.

Follow me to find out about more math teaching and learning!
Blog: www.guidedmath.wordpress.com
Twitter: Drnicki Math
Facebook: Guidedmath|23 Facebook: Math Running Records Instagram: Guidedmathinaction
Copyright 2022 Newtoneducationsolutions

Check out the new Guided Math New Resources

 Dr. Nicki will POP into any book study group! Contact her at drnicki7@gmail.com

Jump Start Your Daily Routines!

Jump Start Your Problem Solving!

Jump Start Your Math Workshop!

Customized Workshops

*Customized Workshops
Call us if you are interested in a customized workshop on any of our books. If you don't see a topic that you are interested in, please contact us to discuss it.

*More Opportunities

Labsites, Virtual Coaching (Individual teachers and teams) and Grade Level Meetings

Blog: www.guidedmath.wordpress.com Website: drnicknewton.com
Website: www.mathrunningrecords.com
Pinterest: @drnicki7
Instagram: Guidedmathinaction
Twitter: Drnickimath
Facebook:
Math Running Records
Guided Math 123

